ELSEVIER

Contents lists available at SciVerse ScienceDirect

Journal of Hazardous Materials

journal homepage: www.elsevier.com/locate/jhazmat

Experimental study on ozone photolytic and photocatalytic degradation of H₂S using continuous flow mode

Xiang Li^a, Guoqing Zhang^{a,*}, Huageng Pan^b

^a Faculty of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China ^b Shunde Dowell Science & Technology Environmental Protection Engineering Co., Ltd., Shunde, Guangdong, 528300, China

ARTICLE INFO

Article history: Received 26 June 2011 Received in revised form 1 November 2011 Accepted 2 November 2011 Available online 9 November 2011

Keywords: Advanced oxidation technology (AOT) H_2S Deactivation Regeneration TiO₂ photocatalyst

ABSTRACT

A foam nickel support was coated with TiO₂ sols containing anatase particles. The malodorous compound, hydrogen sulfide (H₂S), was removed via photolytic and photocatalytic oxidation processes under ambient conditions using a self-made photoreactor with 185-nm ozone (O₃) lamp illumination. The reactor degraded H₂S with high removal efficiency. The effects of several factors, such as initial H₂S concentration, ultraviolet light wavelength, relative humidity (RH), oxygen content, and catalyst deactivation and regeneration, on H₂S degradation were investigated. The highest activity for H₂S destruction was achieved with 80% RH, 21% oxygen content, approximately 200 mg/m³ initial concentration, and 185-nm O₃ lamp illumination, resulting in higher conversion. Sulfur (S⁰) and sulfate ion (SO₄²⁻) were detected as byproducts via the XPS technique. The catalytic activity was improved by SO₄²⁻ promotion, but reduced by S⁰ accumulation on the photocatalyst surface. In addition, by increasing the amount of SO₄²⁻ generated, the yield of S⁰ and catalyst poisoning could be controlled in the reaction.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Malodorous gaseous pollutants in both municipal and industrial waste treatment facilities, as well as in many industrial processes, have become a growing concern because they are a nuisance to the ambient environment and a human health risk. Hydrogen sulfide (H₂S) is one of the substances mainly responsible for the offensive odor emitted by wastewater treatment facilities and industrial plants. H₂S is colorless, corrosive, and highly toxic with an extremely low odor threshold [1–3]. H₂S can be produced and released into the atmosphere by many industrial processes. Currently, there are more than 70 occupation types that involve contact with hydrogen sulfide. Among these occupations are those related to mining, leather production, synthetic rubber manufacturing, gas extraction, papermaking, printing and dyeing, sugar manufacturing, sewage treatment, garbage disposal, etc. [4]. In addition, even low H₂S concentrations can severely corrode the metal components of manufacturing facilities. The effective removal of H₂S has thus become a focus of interest. Heterogeneous techniques that mitigate the H₂S contamination problem in external environments include biofiltration, wet scrubbing with chemical solution adsorption, thermal incineration combined with catalytic processes, etc. [5-13]. Although many

of these processes have already been applied in manufacturing facilities, these conventional methods have their own limitations. Several mitigation measures are difficult to apply because of safety concerns on the handling of chemicals required for use as scrubbing agents, lack of long-term stability, or high-energy consumption.

Titanium dioxide (TiO₂)-mediated photocatalytic reactions have attracted great attention in the air treatment field because of their mild reaction conditions, low cost and energy consumption, and harmless by-products [14]. Indeed, their demand is reflected in the increasing number of publications that deal with both theoretical and practical application aspects of these reactions. The destruction of volatile organic compounds (VOCs) in the gas phase using TiO₂/UV has been actively and widely investigated. VOC destruction is performed at room temperature and ambient pressure; thus, additional reagents are not required. The final products show little or no toxicity, compared with the parent compounds. It has been demonstrated that this process can be used to destroy a wide range of VOCs [15–18]. However, the photodestruction of inorganic compounds, including sulfur-containing ones, has yet to be fully explored.

In the research described in the current paper, optimization of the photolytic and photocatalytic destruction of H₂S in the gasphase is studied. Important parameters affecting the reaction, such as the effects of initial H₂S concentration, ultraviolet light wavelength, relative humidity (RH), oxygen content and photocatalytic deactivation and regeneration, are described. H₂S destruction was

^{*} Corresponding author. Tel.: +86 13632315436; fax: +86 20 39322570. *E-mail address:* leehyung83@163.com (G. Zhang).

^{0304-3894/\$ -} see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jhazmat.2011.11.006

Fig. 1. Scheme of the experimental apparatus utilized for H₂S degradation.

performed under laboratory conditions, and the results demonstrated that photolytic and PCO processes can degrade H₂S gas.

2. Experimental method

2.1. Catalyst support and test methods

2.1.1. Support description

The foam nickel catalyst support (thickness, 3.12 mm; area, 0.113 m²; total weight, 69.056 g; model, 35PPI; voidage, 95%; surface density, $500 \pm 50 \text{ g/m}^2$; TiO₂ loading density, 30 g/m^2 ; and grain diameter, 20 nm) was prepared via the sol–gel method. Nano-TiO₂ was loaded evenly on the surface of this support. It should be noted that the area of the catalyst support used in each experiment was constant, and its value was 0.113 m². The area was calculated by multiplying the support length by its width.

2.1.2. H₂S determination

H₂S concentration was determined by the methylene blue spectrophotometric method, which is described in GB/T 11742-1989, "Standard method for hygienic examination of hydrogen sulfide in air of residential areas".

2.1.3. Ozone (O_3) determination

 O_3 concentration was determined by a portable O_3 analyzer (GD80, Keernuo Technology Co. Ltd., Shenzhen, China). Prior to the experiment (before the lamps were switched on), the ozone detected in the photoreactor originated from the ozone in the air. Its concentration was about 0.02-0.04 ppm. However, at the beginning of the experiment, this original data was initially set to zero such that the original ozone concentration would not affect the data that was monitored during the experiment. Then, a 60-mm long flexible rubber hose was used to connect the O_3 analyzer probe head and the injection and sampling mouth, ensuring a tight seal at the connection points. After approximately 1 min, after obtaining a stable reading, the data displayed on the screen was recorded.

2.2. Photodegradation apparatus

The basic experimental setup used in this study is shown in Fig. 1.

The photoreactor, which is an inner gas circulation system, was constructed using 8-mm thick synthetic glass. Silver paper was pasted onto the inner wall of the photoreactor to prevent UV light from leaking during the experiment. The effective volume of the photoreactor was approximately 120 L. Inside the reactor,

illumination was provided by three types of 8-W UV lamp (185, 253.7, and 365 nm); these lamps were fixed together at the center of the reactor. The circulatory power of the inner gas was supplied by two small fans with 3.60-W power. These two fans were installed in reverse directions at both sides of the reactor. The average circulation rate of the internal air flowing through the catalyst support surface was measured to be approximately 0.3 m/s using an intelligent anemometer (ZRQF, Beijing Detection Instrument Co. Ltd., Beijing, China). The temperature and humidity inside of the device were monitored by an intelligent temperature and humidity controller (SPD319-WHD, Cai Huang Instrument Technology Co. Ltd., Chongqing, China). All power components were controlled by six open switches.

2.3. Experimental methods

 H_2S gas was injected using a syringe into the reactor. Both sides of the fan switch were opened more or less simultaneously to ensure that the mixture gas circulating inside the reactor in the absence of UV illumination until gas–solid adsorption equilibrium under the flow was established. The equilibrium state was indicated by identical initial H_2S concentrations. Then, the UV light was switched on to start the experiment, and the H_2S conversion rate was monitored as a function of time by measuring the H_2S concentration during the experiment. A steady state was achieved 70 min after the UV light was switched on. The H_2S conversion was calculated according to Eq. (1):

$$\eta = 1 - \frac{C}{C_0} \times 100\%$$
 (1)

where C_0 is the initial concentration and *C* is the measured concentration (every 15 min) during the experiment. At the end of the experiment, fresh air was blown into the reactor using an electric fan at maximum speed for more than 2 h to restore initial conditions before running the next experiment. The ventilation in the laboratory was ensured to be adequate. Most experiments were performed at atmospheric pressure, with 30 ± 5 °C temperature and $85\% \pm 12\%$ RH conditions.

3. Results and discussion

3.1. Blank test

A blank test demonstrated the comprehensive effect of H₂S removal with nano-TiO₂ loaded on the foam nickel support under

Fig. 2. Decomposition of H₂S in the blank test. Experimental conditions: O₃ lamp, 185 nm and 8W; average flow rate, 0.3 m/s; oxygen content, 21%; initial concentrations, 247.27 and 237.76 mg/m³; temperature, 30 ± 2 °C; and relative humidity, $84\% \pm 3\%$.

 O_3 lamp irradiation. Fig. 2 shows that the H_2S concentration in the photoreactor initially decreased and then increased because of the effects of gas diffusion, adsorption, etc. A new adsorption equilibrium was achieved at approximately 70 min after all of the H_2S gas was injected into the reactor. Fig. 2 further shows that after the adsorption equilibrium was reached, there was almost no H_2S degradation in the presence of the TiO₂-loaded foam nickel catalyst support (in the absence of UV lamp irradiation). The concentration of H_2S was approximately 190 mg/m³ after the adsorption equilibrium was reached.

The effect of H₂S degradation in the presence of O₃ lamp illumination (in the absence of TiO2-loaded foam nickel catalyst support) was obvious. After 300 min of O₃ lamp irradiation, the H_2S concentration was reduced by approximately 60–70 mg/m³, and the removal efficiency was approximately 30%. Moreover, in the current process, approximately 8.39 ppm O₃ was generated, as measured by the O₃ detector (GD80, Keernuo Technology Co. Ltd., Shenzhen, China) under 5 h of O₃ lamp irradiation. Many studies have shown that the addition of O_3 to photocatalytic processes increases the conversion of contaminants [19-24]. In fact, O₃ has been used to capture excited electrons and prevent electron-hole pairs from recombining. O₃ forms O₃⁻, which can directly participate in the reaction [20]. Thus, the role of O₃ was deemed important when the effects of the photolytic degradation of H₂S were studied in the current paper; the PCO process greatly contributed to H₂S removal efficiency.

3.2. Effects of H₂S initial concentration

The effects of the initial concentration of H_2S on its decomposition are shown in Fig. 3. The results were obtained with temperatures of 30.0–31.5 °C and an RH of 78.3–80.1%. The H_2S concentrations decreased sharply with the extension of O_3 lamp irradiation time in the $O_3/UV/TiO_2$ process. As shown in Fig. 3, the efficiency of photolytic and photocatalytic H_2S degradation reached the highest levels within the first 90 min after the experiment started. The slope of the curve was steep during this stage in each experiment. After the first 90 min had passed, the H_2S removal efficiency significantly slowed down and the slope of the curve relatively flattened. Therefore, it is necessary to adjust the irradiation time for photolytic and PCO of H_2S in practical engineering applications. Based on Fig. 3, the best range of initial H_2S concentration was determined. When the initial concentration was equal to or less than 200 mg/m³, the highest degradation efficiency

Fig. 3. Effects of different initial concentrations on H_2S removal efficiency. Experimental conditions: O_3 lamp, 185 nm and 8 W; average flow rate, 0.3 m/s; oxygen content, 21%; temperature, 30.0–31.5 °C; and relative humidity, 78.3–80.1%.

with a conversion rate of over 97% was achieved. The default H_2S concentration in the current study was thus set to approximately 200 mg/m³.

3.3. Effects of ultraviolet light wavelength

As an essential component to the photolytic and PCO reaction process, the wavelength of UV light has a great effect on H₂S decomposition. Theoretically, UV light with wavelength less than 387.5 nm could activate titania photocatalysts [16]. In the current experiment, three types of 8-W UV lamp (185, 253.7, and 365 nm) were used as UV irradiation sources. The effect of UV light wavelength on H₂S conversion by photolytic and PCO process is shown in Fig. 4. It was found that with the illumination of three types of UV lamp, the conversion of H₂S under 185-nm O₃ lamp irradiation was much higher than under 254- and 365-nm irradiation. After a 3-h illumination, 97.4% of H₂S was decomposed when irradiated with the 185-nm UV lamp, whereas only 39.1% and 33.1% H₂S were removed with the irradiation of the 254- and 365-nm UV lamps, respectively. When irradiated by these three types of light, with enough activation energy provided by photons from UV light, electron and hole pairs are generated on the catalyst surface. Moreover,

Fig. 4. Effects of different wavelengths of UV lamp on H_2S decomposition. Experimental conditions: UV lamp (185, 254, and 365 nm; 8 W); average flow rate, 0.3 m/s; oxygen content, 21%; initial concentrations, 191.83–214.49 mg/m³; temperature, 28.5–31.4 °C; and relative humidity, 77.2–80.9%.

the shorter the wavelength of the UV light, the higher the energy of a single photon. In the case of a constant power of 8 W, the single photon energy provided by the 185-nm light was higher than that provided by the 254- or 365-nm light [19]. These results show that when the photon energy is increased, the H_2S degradation becomes more efficient.

Significant differences in the H₂S removal efficiency resulting from 185-, 254-, and 365-nm UV lamp illumination could also be attributed to another reason. The three UV lamps produced different amounts of O₃ during the photolytic and PCO reaction and had different abilities in decomposing O₃. In the current experiment, approximately 5.95 ppm O₃ was generated under 185-nm lamp illumination in the photoreactor, whereas only 0.32 ppm O_3 was generated by the 254-nm lamp; almost no O₃ was generated by black light within 3 h of irradiation. As a good electron acceptor, O₃ can effectively prevent the recombination of electron-hole pairs and prolong the lifetime of the hole [23]. In addition, O_3 adsorbs 185- and 254-nm light and decomposes to form hydroxyl radicals, while 365-nm light cannot efficiently decompose O₃ such that almost no reaction occurs between O₃ and 365-nm light [19]. The generation of hydroxyl radicals in the O₃/TiO₂/UV process is generally described as follows [19,20,23,24]:

$$TiO_2 + h\nu \rightarrow h^+ + e^- \tag{2}$$

 $h^+ + H_2 O \rightarrow OH^{\bullet} + H^+$ (3)

$$O_3 + e^- \rightarrow O_3^{-\bullet} \tag{4}$$

$$\mathrm{H}^{+} + \mathrm{O}_{3}^{-\bullet} \to \mathrm{HO}_{3}^{\bullet} \tag{5}$$

$$\mathrm{HO}_{3}^{\bullet} \to \mathrm{O}_{2} + \mathrm{OH}^{\bullet} \tag{6}$$

$$O_3 + h\nu(\lambda < 310 \,\mathrm{nm}) \to O^{\bullet} + O_2 \tag{7}$$

$$O^{\bullet} + H_2 O \rightarrow 2 O H^{\bullet} \tag{8}$$

When irradiated with 185- and 254-nm light, the produced O_3 acted as both electron acceptor and hydroxyl radical source. However, when illuminated with 365-nm light, no O_3 is produced during the process and the reactions (4)–(8) do not occur. Hence, the $O_3/UV/TiO_2$ process is more efficient than the UV/TiO₂ process. Overall, H₂S conversion is highest under the illumination of 185-nm light, and conversion with the 254-nm light is higher than that with the 365-nm one.

3.4. The role of water vapor

RH obviously influences the photolytic and PCO process. The water vapor adsorbed onto the photocatalyst combines with the electron-hole (h^+) and generates some hydroxyl groups, such as OH•, which, in turn, oxidizes pollutants. The PCO reaction is typically dominated by the generation of the hydroxyl radical, exhibiting higher reaction rates with larger amounts of hydroxyl radicals [25–27]. In the absence of water vapor, the photocatalytic degradation of some pollutants is severely retarded. However, excessive molecular water on the catalyst surface will restrain the conversion rate because the presence of water vapor competes with the contaminant for adsorption sites on the photocatalyst, thus reducing the pollutant removal rate [28]. This phenomenon is called "competitive adsorption" between molecular water and the pollutant.

Considering the wide range of humidity in atmospheric conditions, the effects of humidity in the range of 20–90% on H_2S decomposition in the photolytic and PCO process was investigated. After a 180 min of 185-nm lamp illumination, the conversion rates of 21%, 43%, 62%, 70%, 80% and 90% RH were achieved at 28.37%, 38.07%, 73.14%, 78.53%, 97.36% and 96.95%, respectively. Fig. 5 shows the sharp initial increase in H_2S conversion with the increase

Fig. 5. Effects of different relative humidity on H_2S conversion. Experimental conditions: UV lamp, 185 nm and 8 W; initial concentration, 203.31–215.31 mg/m³; average flow rate, 0.3 m/s; oxygen content, 21%; temperature, 30.0–32.8 °C; and relative humidity, 21–90%.

in RH from 21% to 80%. H₂S conversion then slightly decreases at higher humidity, which implies that 80% is the optimal humidity for the photolytic and PCO process. The effect of RH on the decomposition of H₂S is complex. Based on the experiment results, it was noted that the effect of humidity on H₂S decomposition by photolytic and PCO process was two-sided: Increasing humidity improves H₂S decomposition, whereas too much humidity will depress the decomposition. This can be explained by the enhancing effect of humidity on hydroxyl radical generation to decompose more contaminants. At the same time, humidity impedes the contact of H₂S with the TiO₂ photocatalyst and O₃ to decrease the decomposition.

3.5. The role of oxygen

Molecular oxygen is an efficient electron acceptor in the conduction band of the semiconductor, restraining the unpleasant electron (e^{-}) -hole (h^{+}) recombination process. In addition, oxygen is the precursor of various reduced $(O_2^{-}, HO_2^{-}, HO_2^{\bullet}, and H_2O_2)$ and very reactive species [29]. Hydroxyl radicals are often considered to be the main charge transfer species contributing to PCO [30]. The presence of oxygen is thus essential for the photolytic and PCO process. The contaminant degradation rate usually increases with increasing oxygen concentration [31], and the competitive adsorption effect between oxygen and the pollutants seems obvious. Therefore, excessive oxygen content will hinder the PCO reaction.

The experiments were performed under conditions of various oxygen contents. The results presented in Fig. 6 shows that at 15% oxygen content, the oxidation rate is at its lowest, reaching just 17.04% after 3 h of illumination. However, when the oxygen content was at 21% (the atmospheric level), H_2S degradation reached the highest conversion rate of 97%. Subsequently, the H_2S removal efficiency sharply decreases at higher oxygen content. The conversion rates of 25% and 30% oxygen contents were achieved at 64.29% and 58.17%, respectively. The results demonstrate that 21% oxygen content is the optimal condition of H_2S degradation in the photolytic and PCO process.

3.6. Photocatalyst deactivation and regeneration

A detailed investigation of catalyst deactivation and regeneration was performed under 185-nm light illumination. Each H₂S degradation experiment lasted 5 h using similar internal

Fig. 6. Effects of different oxygen contents on H_2 S removal efficiency. Experimental conditions: UV lamp, 185 nm and 8 W; average flow rate, 0.3 m/s; initial concentration, 199.54–245.48 mg/m³; oxygen content (15%, 21%, 25%, and 30%); temperature, 30.1–32.9 °C; and relative humidity, 79.3–85.6%.

concentrations (approximately 200 mg/m³), and the catalyst deactivation was completed within 50 h. Fig. 7 shows that the H₂S degradation yield dropped from 99.60% to 81.58% after 30 h of irradiation. This value dropped even further to 25.88% after 50 h of illumination, which implies that the TiO₂ catalyst has ultimately deactivated. After the catalyst deactivation experiment was completed, an electric fan was used for more than 2h to blow away all the H₂S in the reactor. This allowed fresh air to fill the reactor and ensured that none of the H₂S gas was left. The deactivated catalyst was then irradiated by the 185-nm O₃ lamp for 48 h. After this process, the H₂S removal test was again conducted and each test lasted for 5 h under similar previous experimental conditions. During the first 50 h of the H₂S removal process, the average degradation rate remained at 84.21% and the removal rate seemed to increase slightly over time. Therefore, the TiO₂ catalyst is successfully regenerated by 48 h of illumination by the 185-nm O₃ lamp.

After the first 50 h of H_2S removal experiments, the deactivated TiO_2 catalyst was named as sample I (before regeneration) to distinguish it from the regenerated TiO_2 sample. Sample I was renamed to sample II (regenerated sample) after it was irradiated by the 185-nm light for 48 h. Sample III was obtained after continuing the H_2S

Fig. 7. Dependence of H₂S conversion on illumination time. Experimental conditions: UV lamp, 185 nm and 8 W; average flow rate, 0.3 m/s; initial concentration after every 5 h, 211.42–256.17 mg/m³; oxygen content, 21%; temperature, 26.5–28.1 °C; and relative humidity, 77.2% \pm 2%.

Fig. 8. XPS survey spectra of the three TiO_2 samples in the different stages of its regeneration (sample I: before regeneration, sample II: regenerated sample, and sample III: sample after 50 h H₂S removal test following regeneration).

degradation experiments on sample II for 50 h. The three samples were analyzed via XPS (Axis Ultra DLD, Kratos, UK), and the results are shown in the XPS survey spectra and S 2p spectra in Figs. 8 and 9.

Based on the XPS survey spectra (Fig. 8) of the three samples, it was observed that the samples contained Ni, O, Ti, S, C, and other elements. The binding energy was calibrated using the contaminant carbon (C 1s = 284.6 eV) as a reference, then corrected other elements according to the move of the C 1s peak.

The original sample (the TiO₂-loaded foam nickel support catalyst prior to any experiment) and samples I, II, and III were analyzed by a scanning electron microscope (S-3400N-II, Hitachi, Japan). The ratios of surface atoms (S_{total}) to Ti on the surface of these four samples were 0.310, 25.760, 26.754, and 32.392, respectively. These data show that a small amount of S⁰ existed in the original sample in the form of impurities, but most of the S⁰ had been adsorbed onto the surfaces of samples I, II, and III during the H₂S removal experiments. The change in the amount of S_{total} elements between samples I and II was small because none of the H₂S removal experiments were conducted during regeneration. The amount of S_{total} elements in sample III was obviously higher than those in samples I and II because of the additional H₂S removal experiments that were conducted for 50 h after regeneration.

Fig. 9. S 2p XPS spectra of the three TiO_2 samples in the different stages of its regeneration (sample I: before regeneration, sample II: regenerated sample, sample III: sample after 50 h H₂S removal test following regeneration).

The binding energies of S^0 and $NiSO_4$ (S^{6+}) are 162.9 and 167.9 eV, respectively. As shown in Fig. 9, the ratios of S^0 to S^{6+} on the surfaces of samples I, II, and III were 0.756, 0.314, and 0.122, respectively. During the process from before regeneration to the conduction of 50-h removal experiments after regeneration, the amount of S⁰ diminished, whereas the amount of SO₄²⁻ increased successively. Moreover, when the catalyst was regenerated, the ratio of S⁰ to SO₄²⁻ dropped markedly from 0.756 to 0.314, dropping further to 0.122 after the 50-h H₂S degradation experiments were completed. More S⁰ was contained at the stage before regeneration, but more and more S^0 was oxidized into SO_4^{2-} during regeneration. Thus, the photocatalytic activity changed with the different ratios of S⁰ to SO₄²⁻. The amount of S⁰ decreased during the additional removal experiments after regeneration, and the average degradation rate reached 84.21%. These results explain the occurrence catalyst poisoning caused by the by-product S⁰ during the H₂S removal process. Nevertheless, during the additional 50 h removal experiments after regeneration, the formation reaction of S⁰ was restrained. In addition, the catalyst poisoning was inhibited because of the increase in number of the SO_4^{2-} with S^0 reduction on the surface of the catalyst. These results resemble those of other studies on enhancing TiO₂ photocatalytic activity by sulfate promotion [32–39]. The TiO₂ catalyst can improve catalyst activity by promoting the generation of sulfate. The findings reveal that sulfate modification (super acidification) can not only improve the structure and surface properties of the catalyst, but also boost the PCO activity and stability of the TiO₂ catalyst.

Based on the above-mentioned discussion, the mechanisms for H_2S destruction on the photocatalyst surface during the $O_3/UV/TiO_2$ process can be generally proposed as follows [19,20,23,24,29,40]:

$$TiO_2 + h\nu \rightarrow h^+ + e^- \tag{2}$$

 $h^+ + H_2 O \rightarrow OH^{\bullet} + H^+$ (3)

$$O_3 + e^- \rightarrow O_3^{-\bullet} \tag{4}$$

 $\mathrm{H}^{+} + \mathrm{O}_{3}^{-\bullet} \to \mathrm{HO}_{3}^{\bullet} \tag{5}$

 $HO_3^{\bullet} \rightarrow O_2 + OH^{\bullet}$

 $O_3 + h\nu(\lambda < 310 \,\mathrm{nm}) \to O^{\bullet} + O_2 \tag{7}$

 $0^{\bullet} + H_2 0 \rightarrow 20 H^{\bullet}$

 $h^+ + OH^- \rightarrow OH^{\bullet}$

 $O_2 + 2e^- + 2H^+ \rightarrow H_2O_2$ (10)

 $H_2S + 2OH \xrightarrow{\text{incomplete oxidation}} S \downarrow + 2H_2O$ (11)

 $H_2S + 80H^{\bullet} \rightarrow SO_4{}^{2-} + 2H^+ + 4H_2O \tag{12}$

 $H_2S + H_2O_2 \xrightarrow{\text{incomplete oxidation}} S \downarrow + 2H_2O$ (13)

$$H_2S + 4H_2O_2 \rightarrow SO_4^{2-} + 2H^+ + 4H_2O$$
 (14)

4. Conclusions

The photolytic and PCO processes decompose H_2S with high removal efficiency under normal experimental conditions. On the basis of this study, the following conclusions could be drawn. The highest activity is reached with 80% RH, 21% oxygen content, and approximately 200 mg/m³ initial concentration under 185-nm O₃ light illumination. H_2S degradation initially increases with increasing RH, oxygen content, and initial concentration up to peak point of conversion, and then decreases because of "competitive adsorption" among excessive molecular water, O₂, and other pollutants. The TiO₂/UV process is much more efficient with the 185-nm lamp than with the 254- or 365-nm lamp. The XPS results show that the catalyst activity changes with the different ratios of S⁰ to S⁶⁺ (SO₄²⁻) on the catalyst surface. The catalyst deactivates when the ratio of S⁰ to SO₄²⁻ increases. However, this ratio continuously drops during the continuous process of regeneration. With increasing amounts of SO₄²⁻ generated in the reaction, the yield of S⁰ (catalyst poisoning) could be inhibited.

Acknowledgements

This work was financially supported by the Science & Technology Plan Project of Guangdong Province (Grant No. 2009B030500001) and the Cooperation Project of Foshan City and Chinese Academy of Sciences (Grant No. 2010YS015). The authors would like to acknowledge Prof. Yongjun Hu and Prof. Xiaoling Cheng for their help during the XPS analysis.

References

(6)

(8)

(9)

- [1] T. Godish, Air Quality, third ed., CRC/Lewis Publishers, Boca Raton, 1997.
- [2] J.M.M. De Zwart, J.G. Kuenen, C1-cycle of sulfur compounds, Biodegradation 3 (1992) 37–59.
- [3] B. Mills, Review of methods of odour control, Filtr. Sep. 32 (1995) 147-152.
- [4] E. Smet, P. Lens, H. Van Langenhove, Treatment of waste gases contaminated with odorous sulfur compounds, Crit. Rev. Environ. Sci. Technol. 28 (1998) 89–117.
- [5] X. Jiang, J.H. Tay, Removal mechanisms of H₂S using exhausted carbon in biofiltration, J. Hazard. Mater. 185 (2011) 1543–1549.
- [6] D. Ramirez-Saenz, P.B. Zarate-Segura, C. Guerrero-Barajas, E.I. Garcia-Pena, H₂S and volatile fatty acids elimination by biofiltration: clean-up process for biogas potential use, J. Hazard. Mater. 163 (2009) 1272–1281.
- [7] S.J. Park, S.I. Nam, E.S. Choi, Removal of odor emitted from composting facilities using a porous ceramic biofilter, Water Sci. Technol. 44 (2001) 301–308.
- [8] P. Hardy, J.E. Burgess, S. Morton, R.M. Stuetz, Simultaneous activated sludge wastewater treatment and odour control, Water Sci. Technol. 44 (2001) 189–196.
- [9] J. Mitome, G. Karakas, K.A. Bryan, U.S. Ozkan, Effect of H₂O and SO₂ on the activity of Pd/TiO₂ catalysts in catalytic reduction of NO with methane in the presence of oxygen, Catal. Today 42 (1998) 3–11.
- [10] M.Y. Shin, D.W. Park, J.S. Chung, Vanadium-containing catalysts for the selective oxidation of H₂S to elemental sulfur in the presence of excess water, Catal. Today 63 (2000) 405–411.
- [11] D.W. Park, S.W. Chun, J.Y. Jang, H.S. Kim, H.C. Woo, J.S. Chung, Selective removal of H₂S from coke oven gas, Catal. Today 44 (1998) 73–79.
- [12] J.S. Chung, S.C. Paik, H.S. Kim, D.S. Lee, I.S. Nam, Removal of H₂S and/or SO₂ by catalytic conversion technologies, Catal. Today 35 (1997) 37–43.
- [13] Y.X. Chen, Y. Jiang, W.Z. Li, R.C. Jin, S.Z. Tang, W.B. Hu, Adsorption and interaction of H₂S/SO₂ on TiO₂, Catal. Today 50 (1999) 39–47.
- [14] S.L.H. Andrew Mills, An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A 108 (1997) 1–35.
- [15] Q.L. Yu, H.J.H. Brouwers, Indoor air purification using heterogeneous photocatalytic oxidation. Part I. Experimental study, Appl. Catal. B: Environ. 92 (2009) 454–461.
- [16] J.H. Mo, Y.P. Zhang, Q.J. Xu, J.J. Lamson, R.Y. Zhao, Photocatalytic purification of volatile organic compounds in indoor air: a literature review, Atmos. Environ. 43 (2009) 2229–2246.
- [17] H.L. Yu, K.L. Zhang, C. Rossi, Theoretical study on photocatalytic oxidation of VOCs using nano-TiO₂ photocatalyst, J. Photochem. Photobiol. A 188 (2007) 65–73.
- [18] D. Chatterjee, S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants, J. Photochem. Photobiol. C: Photochem. Rev. 6 (2005) 186–205.
- [19] Z. Pengyi, Y.L.F. Gang, C. Qing, Z. Wanpeng, A comparative study on decomposition of gaseous toluene by O₃/UV, TiO₂/UV and O₃/TiO₂/UV, J. Photochem. Photobiol. A 156 (2003) 189–194.
- [20] H. Qi, D. Sun, G. Chi, Formaldehyde degradation by UV/TiO₂/O₃ process using continuous flow mode, J. Environ. Sci. 19 (2007) 1136–1140.
- [21] W. Han, P. Zhang, W. Zhu, J. Yin, L. Li, Photocatalysis of *p*-chlorobenzoic acid in aqueous solution under irradiation of 254 nm and 185 nm UV light, Water Res. 38 (2004) 4197–4203.
- [22] C. Guillard, Photocatalytic degradation of butanoic acid Influence of its ionisation state on the degradation pathway: comparison with O₃/UV process, J. Photochem. Photobiol. A 135 (2000) 65–75.
- [23] L.Y. Sun, H. Lu, J. Zhou, Degradation of H-acid by combined photocatalysis and ozonation Processes, Dyes Pigm. 76 (2008) 604–609.
- [24] H.B. Huang, W.B. Li, Destruction of toluene by ozone-enhanced photocatalysis: performance and mechanism, Appl. Catal. B 102 (2011) 449–453.
- [25] T.N. Obee, R.T. Brown, TiO₂ photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene, Environ. Sci. Technol. 29 (1995) 1223–1231.

- [26] Y. Luo, D.F. Ollis, Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air: kinetic promotion and inhibition, time-dependent catalyst activity, J. Catal. 163 (1996) 1–11.
- [27] D.R. Park, J.L. Zhang, K. Ikeue, H. Yamashita, M. Anpo, Photocatalytic oxidation of ethylene to CO₂ and H₂O on ultrafine powdered TiO₂ photocatalysts in the presence of O₂ and H₂O, J. Catal. 185 (1999) 114–119.
- [28] T.N. Obee, S.O. Hay, Effects of moisture and temperature on the photooxidation of ethylene on titania, Environ. Sci. Technol. 31 (1997) 2034–2038.
- [29] C. Maria, R.M.A. Canela, W.F. Jardim, Gas-phase destruction of H₂S using TiO₂/UV-VIS, J. Photochem. Photobiol. A 112 (1998) 73-80.
- [30] H. Gerischer, A. Heller, The role of oxygen in photooxidation of organic molecules on semiconductor particles, J. Phys. Chem. 95 (1991) 5261–5267.
- [31] C.P. Chang, J.N. Chen, M.C. Lu, Heterogeneous photocatalytic oxidation of acetone for air purification by near UV-irradiated titanium dioxide, J. Environ. Sci. Health Part A: Toxic Hazard. Subst. Environ. Eng. 38 (2003) 1131–1143.
- [32] G. Colon, M.C. Hidalgo, M. Macias, J.A. Navio, Enhancement of TiO₂/C photocatalytic activity by sulfate promotion, Appl. Catal. A 259 (2004) 235–243.
- [33] J. Sohn, S.H. Lee, Acidic properties of nickel sulfate supported on TiO₂-ZrO₂ and catalytic activity for acid catalysis, Appl. Catal. A 266 (2004) 89–97.

- [34] X. Wang, J.C. Yu, P. Liu, X. Wang, W. Su, X. Fu, Probing of photocatalytic surface sites on SO₄^{2–}/TiO₂ solid acids by in situ FT-IR spectroscopy and pyridine adsorption, J. Photochem. Photobiol. A 179 (2006) 339–347.
- [35] M.C. Hidalgo, M. Maicu, J.A. Navío, G. Colón, Study of the synergic effect of sulfate pre-treatment and latinisation on the highly improved photocatalytic activity of TiO₂, Appl. Catal. B 81 (2008) 49–55.
- [36] P. Ciambelli, M.E. Fortuna, D. Sannino, A. Baldacci, The influence of sulfate on the catalytic properties of V₂O₅-TiO₂ and WO₃-TiO₂ in the reduction of nitric oxide with ammonia, Catal. Today 29 (1996) 161–164.
- [37] B.M. Reddy, P.M. Sreekanth, Yusuke Yamada, Q. Xu, T. Kobayashi, Surface characterization of sulfate, molybdate, and tungstate promoted TiO₂-ZrO₂ solid acid catalysts by XPS and other techniques, Appl. Catal. A: Gen. 228 (2002) 269–278.
- [38] S.Y. Lai, W. Pan, C.F. Ng, Catalytic hydrolysis of dichlorodifluoromethane (CFC-12) on unpromoted and sulfate promoted TiO₂-ZrO₂ mixed oxide catalysts, Appl. Catal. B 24 (2000) 207-217.
- [39] D.S. Muggli, L. Ding, Photocatalytic performance of sulfated TiO₂ and Degussa P-25 TiO₂ during oxidation of organics, Appl. Catal. B 32 (2001) 181–194.
- [40] R. Portela, S. Suárez, S.B. Rasmussen, N. Arconada, Y. Castro, A. Durán, P. Ávila, J.M. Coronado, B. Sánchez, Photocatalytic-based strategies for H₂S elimination, Catal. Today 151 (2010) 64–70.